Quelques citations de

La Fin des Certitudes

de Ilya Prigogine.

Version 0
 

 


On sait qu'Einstein a souvent affirmé que "le temps est illusion"· Et en effet, le temps tel qu'il a été incorporé dans les lois fondamentales de la physique, de la dynamique classique newtonienne jusqu'à la relativité et à la physique quantique, n'autorise aucune distinction entre le passé et le futur. Aujourd'hui encore pour beaucoup de physiciens, c'est là une véritable profession de foi: au niveau de la description fondamentale de la nature, il n'y a pas de flèche du temps.

Page 10

[...]au  cours des dernières décennies, une nouvelle science est née, la physique des processus de non-équilibre. Cette science a conduit à des concepts nouveaux tels que l'auto-organisation et les structures dissipatives qui sont aujourd'hui largement utilisés dans des domaines qui vont de la cosmologie jusqu'à l'écologie et aux sciences sociales, en passant par chimie et la biologie. La physique de non-équilibre étudie les processus dissipatifs, caractérisés par un temps unidirectionnel, et ce faisant elle confère une nouvelle signification à l'irréversibilité.

Page 11

L'irréversibilité ne peut plus être attribuée à une simple apparence qui disparaîtrait si nous accédions à une connaissance parfaite. Elle est une condition essentielle de comportements cohérents de milliards de milliards de molécules. Selon une formule que j'aime a répéter, la matière est aveugle à l'équilibre là où la flèche du temps ne se manifeste pas ; mais lorsque celle-ci se manifeste, loin de l'équilibre, la matière commence à voir ! Sans la cohérence des processus irréversibles de non-équilibre, l'apparition de la vie sur la Terre serait inconcevable. La thèse selon laquelle la flèche du temps est seulement phénoménologique est absurde. Ce n'est pas nous qui engendrons la flèche du temps. Bien au contraire, nous sommes ses enfants.

Page 12

Le second développement concernant la révision du concept de temps en Physique a été celui des systèmes dynamiques instables. La science classique privilégiait l'ordre, la stabilité, alors qu'à tous les niveaux d'observation nous reconnaissons désormais le role primordial des fluctuations et de l'instabilité [...] Mais comme nous le montrerons dans ce livre, les systèmes dynamiques instables conduisent aussi à une extension de la dynamique classique et de la physique quantique, et dès lors à une formulation nouvelle des lois de la physique. Cette formulation brise la symétrie entre passé et futur qu'affirmait la physique traditionnelle, y compris la mécanique quantique et la relativité. [...] Dès que l'instabilité est incorporée, la signification des lois de la nature prend un nouveau sens. Elles expriment désormais des possibilités.

Pages 12 & 13

D'autres questions sont directement rattachées au problème du temps. L'une est le rôle étrange conféré à l'observateur dans la théorie quantique. Le paradoxe du temps fait de nous les responsables de la brisure de symétrie temporelle observée dans la nature. Mais, plus encore, c'est l'observateur qui serait responsable d'un aspect fondamental de la théorie quantique qu'on appelle la réduction de la fonction d'onde. C'est ce rôle qu'elle attribue à l'observateur qui, nous le verrons, a donné à la mécanique quantique son aspect apparemment subjectiviste et a suscité des controverses interminables. Dans l'interprétation usuelle, la mesure, qui impose une référence à l'observateur en théorie quantique, correspond à une brisure de symétrie temporelle. En revanche, l'introduction de l'instabilité dans la théorie quantiquc conduit à une brisure de la symétrie du temps. L'observateur quantique perd dès lors son statut singulier !  La solution du paradoxe du temps apporte également une solution au paradoxe quantique, et mène à une formulation réaliste de la théorie. Soulignons que cela ne nous fait pas revenir à  l'orthodoxie  classique  et  déterministe ; bien  au  contraire, cela nous conduit à affirmer encore davantage le caractère statistique de la mécanique quantique.  Comme nous l'avons déjà souligné, tant en dynamique classique qu'en physique quantique, les lois fondamentales expriment maintenant des possibilités et non plus des certitudes. Nous avons non seulement des lois  mais aussi des événements qui ne sont pas déductibles des lois mais en actualisent les possibilités.

Page 13

La question du temps et du déterminisme n'est pas limitée aux sciences, elle est au coeur de la pensée occidentale depuis l'origine de ce que nous appelons la rationalité et que nous situons à l'époque présocratique. Comment concevoir la créativité  humaine, comment penser l'éthique dans un monde déterministe ? [...]
La démocratie et les sciences modernes sont toutes deux les héritières de la même histoire, mais cette histoire mènerait à une contradiction si les sciences faisaient triompher une conception déterministe de la nature alors que la démocratie incarne l'idéal d'une société libre. Nous considérer comme étrangers à la nature implique un dualisme  étranger à  l'aventure  des sciences aussi bien qu'à la passion d'intelligibilité propre au monde occidental. Cette passion est selon Richard Tarnas [1], de "retrouver son unité avec les racines de son être". Nous pensons nous situer aujourd'hui à un point crucial de cette aventure  au point de départ d'une nouvelle rationalité qui n'identifie plus science et certitude, probabilité et ignorance.
En cette fin de siècle, la question de I'avenir de la science est souvent posée. Pour certains, tel Stephen Hawking dans sa Brève histoire du temps [2], nous sommes proches de la fin, du moment où nous serons capables de déchiffrer la "pensée de Dieu".
Je crois, au contraire que nous sommes seulement au début de l'aventure
Nous assitons à l'émergence d'une science qui n'est plus limitée à des situations simplifiées, idéalisées, mais nous met en face de la complexité du monde réel,
une science qui permet à la créativité humaine de se vivre comme l'expression singulière d'un trait fondamental commun à tous les niveaux de la nature.

Page 15


[1]Richard Tarnas "The Passion of the Western Mind", New York, Harmony, 1991, p443.
[2]Stephen Hawking, "Une brève histoire du temps", Paris, Flammarion, Collection "Champs", 1991

 


Les questions étudiées dans ce livre - l'univers est-il régi par des lois déterministes ? Quel est le rôle du temps ? - ont été formulées par les présocratiques à l'aube de la  pensée occidentale.  Elles  nous accompagnent depuis plus de deux mille cinq cent ans. Aujourd'hui, les développements de la physique et des  mathématiques  du  chaos et de  l'instabilité ouvrent un nouveau chapitre dans cette longue histoire. Nous percevons ces problèmes sous un angle renouvelé. Nous pouvons désormais éviter les contradictions du passé.
Épicure fut le premier à dresser les termes du dilemme auquel la physique moderne a conféré le poids de son autorité. Successeur de Démocrite, il imaginait le monde constitué  par des atomes en mouvement dans le vide. Il pensait que les atomes tombaient tous avec la même vitesse en suivant des trajets parallèles.
Comment pouvaient-ils alors entrer en collision ? Comment la nouveauté, une nouvelle combinaison d'atomes, pouvait-elle apparaitre ? Pour Épicure, le problème de la science, de l'intelligibilité de la nature et celui de la destinée des hommes étaient inséparables. Que pouvait signifier la liberté humaine dans le monde déterministe des atomes ? Il écrivait à  Ménécée : "Quant au destin, que certains regardent comme le maître de tout, le sage en rit. En effet, mieux vaut encore accepter le mythe sur les dieux que de s'asservir au destin des physiciens. Car le mythe nous laisse l'espoir de nous concilier les dieux par les honneurs que nous leur rendons, tandis que le destin a un caractère de nécessité inexorable". Les physiciens dont parle Épicure ont beau être les philosophes stoiciens cette citation résonne de manière étonnamment moderne !  [...]  Mais avons-nous besoin d'une pensée de la nouveauté ? Toute nouveauté n'est-elle pas illusion ? Aussi la question remonte aux origines. Pour Héraclite, tel que l'a compris Popper, "la vérité est d'avoir saisi l'être essentiel de la nature, de l'avoir conçue comme implicitement infinie, comme le processus même".

Page 17-18

Chacun sait que la physique newtonienne a été détrônée au XXème siècle par la mécanique quantique et la relativité. Mais les traits fondamcntaux de la loi de Newton, son déterminisme et sa symétrie temporelle, ont survécu. Bien sûr, la mécanique quantique ne décrit plus des trajectoires mais des fonctions d'onde (voir section IV de ce chapitre et le chapitre VI), mais son équation de base, l'équation de Schrödinger, est elle aussi déterministe et à temps réversible.
Les lois de la nature énoncée par la physique relèvent donc d'une connaissance idéale qui atteint la certitude. Dès lors que les conditions initiales sont données, tout est déterminé. La nature est un automate que nous pouvons contrôler, en principe du moins. La nouveauté, le choix, l'activité spontanée ne sont que des apparences, relatives seulement au point de vue humain.

Page 20

Remarque :
Le déterminisme est issu de la pensée de l'outil. L'emploi de l'outillage, le processus technique est le prototype du déterminisme intellectuel. Comme il  n'existe que très peu de processus techniques qui font usage de processus de type probabilistes, l'incertitude n'apparait pas dans la logique usuelle qui n'est que le reflet intellectuel de la pratique technique concrète. Mais tout n'est pas outil, il faut comprendre aussi ce que la nature a de naturel. C'est en quoi le point de vue de Prigogine est difficile à assimiler dans ce monde-ci... Il s'agit d'une logique qui n'a pas de précédent dans la pratique technicienne.

De nombreux historiens soulignent le rôle essentiel joué par la figure du Dieu chrétien, conçu au XVII ème siècle  comme un législateur tout-puissant, dans cette formulation des lois de la nature. La théologie et la science convergeaient  alors.  Leibniz  a  écrit :  "...dans la moindre des substances, des yeux aussi perçants que ceux de Dieu pourraient lire toute la suite des choses de l'univers. Quae sint, quae fuerint, quae mox futura trahantur (qui sont, qui ont été, qui se produiront dans l'avenir)". La soumission de la nature à des lois déterministes rapprochait ainsi la connaissance humaine du point de vue divin atemporel.
La conception d'une nature passive, soumise à des lois déterministes, est une spécificité de l'Occident.
En Chine et au Japon, "nature" signifie "ce qui existe par soi-même ". Joseph Needham nous a rappelé l'ironie avec laquelle les lettrés chinois reçurent l'exposé des triomphes de la science moderne.


Remarque :
Quant à l'idée qu'une nature passive serait une spécifité de l'Occident, tout dépend de quelle période de l'Occident on parle : l'étymologie grecque du mot physique (physis) par exemple suggère tout le contraire


Dans l'un des ses derniers livres, L'Univers Irrésolu, Karl Popper écrit: "Je considère le déterminisme laplacien - confirmé  comme il semble l'être par le déterminisme  des  théories  physiques,  et par  leur  succès éclatant - comme l'obstacle le plus solide et plus sérieux sur le chemin d'une explication et d'une apologie de la liberté, de la créativité, et de la responsabilité humaines". Pour Popper, cependant, le déterminisme ne met pas seulement en cause la liberté humaine. Il  rend impossible la rencontre de la réalité qui est la vocation même de notre connaissance: Popper écrit plus loin que la réalité du temps et du changement a toujours été pour lui  "le fondement essentiel du réalisme".
Dans  "
Le possible et le  réel",  Henri  Bergson demande "A quoi sert le temps ?... le temps est ce qui empêche  quc  tout  soit  donné  d'un  seul  coup. Il retarde, ou plutôt il est retardement. Il doit donc étre élaboration. Ne serait-il pas alors le véhicule de création et de choix ? L'existence du temps ne prouverait-elle pas qu'il y a de l'indétermination dans les choses ?". Pour Bergson comme pour Popper 1e réalisme et l'indéterminisme sont solidaires. Mais cette conviction  se  heurte  au  triomphe de  la  physique moderne, au fait que le plus fructueux et le plus rigoureux des dialogues que nous ayons  mené avec nature aboutit à l'affirmation du déterminisme.  L'opposition entre le temps réversible et déterministe de la physique et le temps des philosophes a mené à des conflits ouverts. Aujourd'hui, la tentation est plutôt celle d'un repli, qui se traduit par un scepticisme général quant à la signification de nos connaissances. Ainsi, la philosophie postmoderne prône la déconstruction. Rorty par exemple appelle à transformer les problèmes qui ont divisé notre tradition en sujets de conversation civilisée. Bien sûr, pour lui les controverses scientifiques, trop techniques n'ont pas de place dans cette conversation.

[...] Mais le conflit n'oppose pas seulement les sciences et la philosophie, Il oppose la physique à tous les autres savoirs. En octobre 1994 Scientific American a consacré un numéro spécial à "La vie dans l'univers".  A tous les niveaux, que ce soit celui de la cosmologie, de la géologie, de la biologie ou de la société, le caractère évolutif de la réalité s'affirme de plus en plus. On s'attendrait donc à ce que la question soit posée: comment comprendre ce caractère évolutif dans le cadre des lois de la physique? Or un seul article, écrit par le célèbre physicien Steven Weinberg, discute cet aspect. Weinberg écrit : "Quel que soit notre désir d'avoir une vision unifiée de la nature, nous ne cessons de nous heurter à la dualité du rôle de la vie intelligente dans l'univers... D'une part, il y a l'équation de Schrödinger,  qui décrit de  manière parfaitement déterministe comment la fonction d'onde de n'importe quel  système  évolue  dans le  temps.  Et puis,  d'une manière  parfaitement  indépendante,  i1  y  a  un ensemble de principes qui nous disent comment utiliser la fonction d'onde pour calculer les probabilités des différents résultats possibles produits par nos mesures".
"
Nos mesures?" Est-i1 donc suggéré que c'est nous par nos mesures, qui serions responsables de ce qui échappe au déterminisme universel, qui serions donc à l'origine de l'évolution cosmique ? C'est le point de vue que défend également Stephen Hawking dans "Une brève histoire du Temps". I1 y expose une interprétation purement géométrique de la cosmologie : le temps ne serait en quelque sorte qu'un accident de l'espace.

Page 22

Dans The Emperor's New Mind, Roger Penrose écrit que "c'est notre compréhension actuellement insuffisante des lois fondamentales de la physique qui nous empêche  d'exprimer  la  notion  d'esprit  (mind)  en termes physiques ou logiques". Je suis d'accord avec Penrose : nous avons besoin d'une nouvelle formulation des lois fondamentales de la physique, mais celle-ci ne doit pas nécessairement décrire la notion d'esprit, elle doit d'abord incorporer dans nos lois physiques la dimension  évolutive sans laquelle nous sommes condamnés à une conception contradictoire de la réalité. Enraciner l'indéterminisme et l'asymétrie du temps dans les lois de la physique est la réponse que nous pouvons donner aujourd'hui au dilemme d'Épicure.  Sinon,  ces  lois  sont incomplètes, aussi incomplètes que si elles ignoraient la gravitation ou l'électricité.

Page 24


13. R. Penrose, The Ernperor's New Mind. Oxford, Oxford University Press, Vintage edition, 1990, p. 4-5.

Au début de ce chapitre, nous avons mentionné les penseurs présocratiques. En fait, les anciens grecs nous ont légué deux idéaux qui ont guidé notre histoire :  celui d'intelligibilité de la nature ou, comme l'a écrit Whitehead, de "former un système d'idées générales qui soit nécessaire, logique, cohérent, et en fonction duquel tous les éléments de notre expérience puissent être interprétés"; et celui de démocratie basée sur le présupposé de la liberté humaine, de la créativité et de la responsabilité. Nous sommes certes très loin de l'accomplissement de ces deux idéaux, du moins nous pouvons désorrnais conclure qu ïls ne sont pas contradictoires.

Page 25

La nature nous présente des processus irréversibles et des processus réversibles, mais les premiers sont la règle, et les seconds l'exception. Les processus macroscopiques, tels que réactions chimiques et phénomènes de transport, sont irréversibles. Le rayonnement  solaire est le résultat  de processus nucléaires irréversibles. Aucune description de l'écosphère ne serait possible sans les processus irréversibles innombrables qui s'y déroulent. Les processus réversibles, en revanche, correspondent toujours à des idéalisations : nous devons négliger la friction pour attribuer au pendule un comportement réversible, et cela ne vaut que comme une approximation.

Page 26

[...] Après plus d'un siècle, au cours duquel la Physique a connu d'extraordinaires mutations,1'interprétation de 1'irreversibilité comme approximation est présentée par la majorité des physiciens contemporains comme allant de soi. Qui plus est, le fait que nous serions alors responsables du caractère évolutif de 1'univers n'est pas explicité. Au contraire, une première étape du raisonnement qui doit mener le lecteur a accepter le fait que 1'irréversibilité n'est rien d'autre qu'une conséquence de nos approximations consiste toujours à présenter les conséquences du second principe comme évidentes, voire triviales. Voici par exemple comment Murray Gell-Mann s'exprime dans The Quark and the Jaguar  [17] : "L'explication de 1'irréversibilité est qu'il y a plus de manières pour les clous ou les pièces de monnaie d'être mélangés que triés. I1 y a plus de manières pour les pots de beurre et de confiture d'être contaminés 1'un par 1'autre que de rester purs. Et il y a plus de manières pour les molécules d'un gaz d'oxygène et d'azote d'être mélangées que séparées. Dans la mesure où on laisse aller les choses au hasard, on peut prévoir qu'un système clos caractérisé par quelque ordre initial évoluera vers le désordre, qui offre tellement plus de possibilités. Comment ces possibilités doivent-elles être comptées ? Un systeme entièrement clos, décrit de manière exacte, peut se trouver dans un grand nombre d'états distincts, souvent appelés "microétats ". En mécanique quantique, ceux-ci sont les états quantiques possibles du système. Ils sont regroupés en catégories (parfois appelées macroétats) selon des propriétés établies par une description grossière (coarse grained). Les microétats correspondant à un macroétat donné sont traités comme équivalents, ce qui fait que seul compte leur nombre. " Et Gell-Man conclut : " L'entropie et 1'information sont étroitement liées. En fait, l'entropie peut être considérée comme une mesure de l'ignorance.  Lorsque nous savons seulement qu'un systeme est dans un macroétat donné, l'entropie du macroétat mesure le degré d'ignorance à propos du microétat du système, en comptant le nombre de bits d'information additionnelle qui serait nécessaire pour  le specifier, tous les microétats dans le macroétat étant considérés comme également probables".
J'ai cité  longuement Gell-Mann,  mais le même genre de présentation de la flèche du temps figure dans la plupart  des  ouvrages.  Or cette interprétation, qui implique que notre ignorance, le caractère grossier de nos  descriptions, seraient responsables du second principe et dès lors de la flèche du temps, est intenable.
Elle nous force à conclure que le monde paraîtrait parfaitement symétrique dans le temps à un observateur bien informé, comme le démon imaginé par Maxwell, capable d'observer les microétats. Nous serions les pères du temps et non les enfants de l'évolution. Mais comment expliquer alors que les propriétés dissipatives, comme les coefficients de diffusion ou les temps de relaxation, soient bien définis, quelle  que  soit  la précision  de  nos  expériences?
Comment expliquer le rôle constructif de la flèche du temps que nous avons évoqué plus haut ?

Page 29 et 30


[17]. M. Gell-Mann, The Quark and the Jaguar, Londres. Little Brown and Co, 1994, p. 218-220.

Remarque: quelle belle image... quel beau parfum de logique quasi raciste. Ce qui n'est pas pur est "contaminé"...
 


[...] Les développements récents de la physique et de la chimie de non équilibre montrent que la flèche du temps peut être une source d'ordre. Il en était déjà ainsi dans des cas classiques simples, comme la diffusion thermique. Bien sûr, les molécules mettons d'hydrogène et d'azote au sein d'une boite close, évolueront vers un mélange uniforme. Mais chauffons une partie de la boite et refroidissons l'autre. Le système évolue alors vers un état stationnaire dans lequel la concentration de l'hydrogène est plus élevée dans la partie chaude et celle de l'azote dans la partie froide. L'entropie produite par le flux de chaleur, qui est un phénomène irréversible, détruit l'homogénéité du mélange. C'est donc un processus générateur d'ordre, un processus qui serait impossible sans le flux de chaleur. L'irréversibilité mène à la fois au désordre et à l'ordre.

Page 31


Remarque: et même encore plus simples - merveilleusement simples - les "pots vibrants" utilisés dans l'industrie pour trier et mettre en ordre des pièces sont un autre example  du fait qu'il suffit parfois d'injecter un peu d'énergie créer de l'ordre.

 


Retenons ici que nous pouvons affirmer aujourd'hui que c'est grâce aux processus irréversibles associés à la flèche du temps que la nature réalise ses structures les plus délicates et les plus complexes. La vie n'est possible que dans un univers loin de l'équilibre. Le développement remarquable de la physique et de la chimie de non-équilibre au cours de ces dernières décennies renforce donc les conclusions présentées dans La Nouvelle Alliance * :
  1. Les processus irréversibles (associés à la flèche du temps) sont aussi réels que les processus réversibles décrits par les lois traditionnelles de la physique ; ils ne peuvent pas s'interpréter comme des approximations des lois fondamentales.
 2. Les  processus  irréversibles jouent  un  rôle constructif dans la nature.
 3. L'irréversibilité exige une extension de la dynamique.

Page 32

[*] I. Prigogine et I. Stengers, La Nouvelle Alliance, Paris, Gallimard, 1979
 


II y a deux  siècles, Lagrange décrivait la mécanique analytique, où les lois du mouvement newtonien trouvaient  leur  formulation  rigoureuse,  comme  une branche des mathématiques [18]. Aujourd'hui encore on parle souvent de  "mécanique  rationnelle", ce qui signifierait que les lois newtoniennes exprimeraient les lois de la "raison" et pourraient ainsi prétendre à une vérité immuable. Nous savons qu'il n'en est pas ainsi puisque ous avons vu naître la mécanique quantique et la relativité. Mais aujourd'hui c'est à la mécanique quantique que l'on est tenté d'attribuer une vérité absolue. Gell-Mann écrit dans The Quark and the Jaguar que "la mécanique quantique n'est pas, en elle-même une théorie ; c'est plutôt le cadre dans lequel doit entrer toute théorie physique contemporaine". En est-il vraiment ainsi ?  Comme  mon regretté ami LéonRosenfeld ne cessait de le souligner, toute théorie est fondée sur des concepts physiques associés à des idéalisations qui rendent possible la formulation mathématique  de ces théories ;  c'est pourquoi "aucun concept physique n'est suffisamment défini sans que soient connues les limites de sa validité", limites provenant des idéalisations mêmes qui le fondent.

Page 33


[18] J.-L.  Lagrange,  Théorie des fonctions  analytiques,  Paris, Imprimerie de la République 1796.
[20] L. Rosenfeld, "
Considérations non-philosophiques sur la causalité", in Les Théories de la Causalité, Paris, PUF, 1971, P137.
 

La différence entre systèmes stables et instables nous est familière. Prenons un pendule et étudions son mouvement en tenant compte de 1'existence d'une friction. Supposons-le d'abord immobile à l'équilibre. On  sait que  son énergie potentielle y presente une valeur minimale. Une petite perturbation sera suivie par un retour à 1'équilibre. L'état d'équilibre du pendule est stable. En revanche, si nous réussissons à faire tenir un crayon sur sa pointe,1'équilibre est instable. La moindre perturbation le fera tomber d'un côté ou de I'autre. I1 y a une distinction fondamentale entre  les mouvements stables et instables. En bref, les systèmes dynamiques stables sont ceux ou de petites modifications des conditions initiales produisent de petits effets. Mais pour une classe très étendue de systèmes dynamiques, ces modifications s'amplifient au cours  du temps.  Les systèmes chaotiques sont  un exemple extrême de systèmes instables car les trajectoires correspondant à des conditions initiales aussi proches que I'on veut divergent de maniere exponentielle au cours du temps. On parle alors de "sensibilité aux conditions initiales" telle que 1'illustre la parabole bien connue de "1'effet papillon": le battement des ailes d'un papillon dans le bassin amazonien peut affecter le temps qu'il fera aux Etats-Unis. Nous verrons des exemples de systèmes chaotiques aux chapitres III et IV. On parle souvent de "chaos déterministe". En effet, les équations de systèmes chaotiques sont déterministes comme le sont les lois de Newton. Et pourtant elles engendrent des comportements d'allure aléatoire ! Cette découverte surprenante a renouvelé la dynamique classique, jusque là considérée comme un sujet clos.

Page 34 & 35

 



[...] A la fin du XIXème siècle seulement, Poincaré a montré que les problèmes sont fondamentalement différents selon qu'il s'agit d'un système dynamique stable ou non. Déjà le problème à trois corps [Le Soleil, la Terre et la Lune] entre dans la catégorie des systèmes instables. [...]
Page 36

 


Au lieu de considérer un seul système, nous pouvons en étudier une collection, un "ensemble p", selon le terme utilisé depuis le travail pionnier de Gibbs et d'Einstein au début de ce siècle. Un ensemble est représenté par un nuage de points dans l'espace des phases. Ce nuage est décrit par unc fonction ro(q,p,t) dont l'interprétation physique est simple : c'est la distribution de probabilité, qui décrit la densité des points du nuage au sein de l'espace des phases. Le cas particulier d'un seul système correspond alors à la situation où ro a une valeur nulle partout dans 1'espace des phases sauf en un point unique q0, p0.  Ce cas correspond à une forme spéciale de ro : les fonctions qui ont la propriété de s'annuler partout sauf en un seul point noté x0 sont appelées "fonctions de Dirac" delta(x-x0). Une telle fonction delta(x-x0) est donc nulle pour tout point x différent de x0. Nous reviendrons sur les propriétés des fonctions delta par la suite. Soulignons d'ores et déjà qu'elles appartiennent à une classe de fonctions généralisées ou de distributions (à ne pas confondrc avec les distributions de probabilité). Elles ont en effet des propriétés anormales par rapport aux fonctions régulières car lorsque x=x0, la fonction delta(x-x0) diverge, c'est-à-dire tend vers l'infini. Soulignons-le déjà, ce type de fonction ne peut être utilisé qu'en conjonction avec des fonctions régulières, les fonctions test  phi(x). La nécessité d'introduire une fonction test jouera un rôle crucial dans l'extension de la dynamique que nous allons décrire. Bornons-nous à souligner l'inversion de perspective qui s'esquisse ici : alors  que  la  description  d'un système individuel semble  intuitivement  la  situation  première, elle devient, lorsqu'on part des ensembles, un cas particulier, impliquant l'introduction d'une fonction delta aux propriétes singulières.

Page 37 & 38

 


Henri Poincaré fut tellement impressionné par ce succès de la théorie cinétique qu'il écrivit : "peut-être est-ce la théorie cinétique des gaz qui va prendre du développement et servir de modèles aux autres... La loi physique alors prendrait un aspect entièrement nouveau...  elle prendrait le caractère d'une loi statistique" [21]. Nous le verrons, cet énoncé était prophétique. La notion de probabilité introduite empiriquement par Boltzmann a été un coup d'audacc d'une très grande fécondité. Plus d'un siècle après, nous commençons à comprendre comment elle émerge de la dynamique à travers 1'instabilité : celle-ci détruit 1'équivalence entre le niveau individuel et le niveau statistique, si bien que les probabilités prennent alors une signification intrinsèque , irréductible à une interprétation en termes d'ignorance ou d'approximation. C'est ce que mon collègue B. Misra et moi avons souligné en introduisant l'expression "intrinsèquement aléatoire".

Page 39

[21] . H. Poincaré, La valeur de la science, Paris, Flammarion, 1913, p. 210.
 

[...] la  distribution de probabilité nous permet d'incorporcr dans le cadre de la description dynamique la microstructure complexe de l'espace des phases. Elle contient donc une infonnation additionnelle, qui est perdue dans la description des trajectoires individuelles. Comme nous le verrons au chapitre IV, c'est un point fondamental : la description probabiliste est plus riche que la description individuelle, qui pourtant a toujours été considérée comme la description fondamentale. C'est la raison pour laquelle nous obtiendrons au niveau des distributions de probabilité ro une description dynamique nouvelle permettant de prédire l'évolution de l'ensemble. Nous pouvons ainsi obtenir les échelles de temps caractéristiques correspondant à l'approche des fonctions de distribution vers l'équilibre, ce qui est impossible au niveau des trajectoire individuelles. L'équivalence entre le niveau individuel et le niveau statistique est bel et bien détruite. Nous parvenons, pour les distributions de probabilité, à des solutions nouvelles irréductibles, au sens où elles ne s'appliquent pas aux trajectoires individuelles. Les "lois du chaos" associées à une description régulière et prédictive des systèmes chaotiques se situent au niveau  statistique.  C'est  ce  que nous  entendions lorsque nous parlions à la section précédente d'une "généralisation de la dynamique". Il s'agit d'une formulation de la dynamique au niveau statistique qui n'a pas d'équivalent en termes de trajectoires. Cela nous conduit à une situation nouvelle. Les conditions initiales ne peuvent plus être assimilées à un point dans l'espace des phases, elles correspondent à une région décrite par une distribution de probabilité. Il s'agit donc d'une description non-locale. De plus, comme nous le verrons, la symétrie par rapport au temps est brisée car dans la fomulation statistique le passé et le futur jouent des rôles différents. Bien sûr, lorsque l'on considère des systèmes stables, la description statistique se réduit à la description usuelle. On pourrait se demander pourquoi il a fallu tellement de temps pour arriver à une formulation des lois de la nature qui inclue l'irréversibilité et les probabilités.  L'une des  raisons  en  est  certainement d'ordre idéologique : c'est le désir d'accéder à un point de vue quasi divin sur la nature. Que devient le démon de Laplace dans le monde que décrivent les lois du chaos ? Le chaos déterministe nous apprend qu'il ne pourrait prédire le futur que s'il connaissait l'état du monde avec une précision infinie. Mais on peut désormais aller plus loin car il existe une forme d'instabilité dynamique encore plus forte, telle que les trajectoires sont détruites quelque soit la précision de la description. Ce type d'instabilité est d'une importance fondamentale puisqu ïl s'applique, comme nous le verrons, aussi bien à la dynamique classique qu'à la mécanique quantique. ll est central dans tout ce  livre. Une fois de plus, notre point de départ est le travail fondamental d'Henri Poincaré à la fin du XIXème siècle [23]

Nous avons déjà vu que Poincaré avait établi une distinction fondamentale entre systèmes stables et systèmes instables. Mais il y a plus. Il a introduit la notion cruciale de "système dynamique non intégrable". Il a montré que la plupart des systèmes dynamiques étaicnt non intégrables. I1 s'agissait de prime abord d'un  résultat négatif,  longtemps considéré comme un simple problème de technique mathématique. Pourtant comme nous allons le voir, ce résultat exprime la condition sine qua non à toute possibilité d'articuler de manière cohérente le langage de la dynamique à ce monde en devenir qui est le nôtre.
Qu'est-ce en effet qu'un système intégrable au sens de Poincaré ?  Tout  système  dynamique  pent  être caractérisé par une énergie cinétique, qui dépend de la seule vitesse des corps qui le composent, et par une énergie potentielle, qui dépend de l'interaction entre ces corps, c'est-à-dire de leurs distances relatives. Un cas particulièrement simple est celui de particules libres,
dénuées d'interactions mutuelles. Dans ce cas, il n y a pas d'énergie potentielle ct le calcul de la trajectoire devient trivial. Un tel système est intégrable au sens de Poincaré. On peut montrer que tout système  dynamique  intégrable  peut  être  représenté comme s'il était constitué de corps dépourvus d'interactions. Nous reviendrons au chapitre V sur le formalisme hamiltonien qui permet ce type de transformation.  Nous  nous  bornons  ici  à  présenter  la  définition de 1'intégrabilité énoncée par Poincaré: un système dynamique intégrable est un système dont on  peut défmir les variables de telle sorte que l'énergie potentielle soit éliminée, c'est-à-dire de telle sorte que son comportement devienne isomorphe à celui d'un système de particules libres sans interaction. Poincaré a montré qu'en général  de telles variables ne peuvent pas être obtenues. Des lors, en général, les systèmes dynamiques sont non intégrables.
Si la démonstration de Poincaré avait conduit à un résultat différent, s'il avait pu montrer que tous les systèmes  dynamiques  étaient  intégrables,  jeter un pont entre le monde dynamique et le monde des processus que nous observons aurait été exclu.
Dans un monde isomorphe à un ensemble de corps sans interaction, il n'y a pas de place pour la flèche du temps ni pour l'auto-organication, ni pour la vie. Mais Poincaré n'a pas seulement démontré que l'intégrabilité s'applique seulement à une classe réduite de systèmes dynamiques, il a identifié la raison du caractère exceptionnel de cette propriété: 1'existence de résonance entre les degrés de liberté du système. Il a, ce faisant, identifié le problème à partir duquel une formulation élargie de la dynamique devient possible.
La notion de résonance caractérise un rapport entre des fréquences. Un exemple simple de fréquence est celui  de  l'oscillateur  harmonique, qui décrit  le comportement d'une particule liée à un centre par une force proportionnelle à la distance : si on écarte la particule du centre, elle oscillera avec une fréquence bien définie. Considérons maintenant le cas le plus familier d'oscillateur, celui du ressort qui, éloigné de sa position d'équilibre, vibre avec une fréquence caractéristique. Soumettons un tel ressort à une force extérieure, caractérisée elle aussi par une fréquence que nous pouvons faire varier.
Nous observons alors un phénomène de couplage entre deux fréquences. La résonance se produit lorsque les deux fréquences, celle du ressort et  celle  de  la  force  extérieure,  correspondent à un rapport numérique simple (l'une des fréquences est égale à un multiple entier de l'autre). L'amplitude de la vibration du pendule augmente alors considérablement. Le même phénomène se produit en musique, lorsque nous jouons une note sur un instrument. Nous entendons les harmoniques. La résonance "couple" les sons.
Les fréquences, et en particulier la question de leur résonance, sont au coeur de la description des systèmes dynamiques. Chacun des degrés de liberté d'un système dynamique est caractérisé par une fréquence. La valeur des différentes fréquences dépend en général du point de l'espace des phases. Considérons un système à deux degrés de liberté, caractérisé par les fréquences
w1 et w2. Par définition, en chaque point de l'espace des phases où la somme n1w1+n1w2 s'annule pour des valeurs entières, non nulles de n1 et n2 nous avons résonance, car en un tel point n1/n2=-w2/w1.  Or, le calcul de la trajectoire de tels systèmes fait intervenir des dénominateurs de type 1/(n1w1+n2w2), qui  divergent donc aux points de résonance, ce qui rend le calcul impossible. C'est le problème des petits diviseurs, déjà souligné par Le Verrier. Ce que Poincaré a  montré, c'est que les résonances et les dénominateurs dangereux qui leur correspondent constituaient un obstacle incontournabte s'opposant à l'intégration de la plupart des systèmes dynamiques.
Poincaré avait compris que son résultat menait à ce qu'il appela "
le problème général de la dynamique", mais ce problème fut longtemps négligé. Max Born a écrit: "Il serait vraiment remarquable que la Nature ait trouvé le moyen de résister au progrès de la connaissance en ce cachant derrière le rempart des difficultés analytiques du problème à n-corps"[...]

Pages 41 à 46


[21] H. Poincaré, "La valeur de la Science", Paris Flammarion, 1913, P210
[22] B Mandelbrot, "The Fractal Geometry of Nature", San Francisco, J.Wiley, 1982
[23] H. Poincaré, "Les méthode nouvelles de la rnécanique", Paris, Gauthier-Villars 1893 (Dover 1957).

Remarque: c'est une demie explication car il resterait à savoir d'où vient le dit "point de vue divin". En fait, ce point de vue divin n'est pas celui de n'importe quelle religion. Par exemple, ce n'est pas celui du taoisme, ni du boudhisme, ni même de l'animisme. Le point de vue divin en question est le point de vue de dieux techniciens, soit Grecs, Hébreux ou dérivés [...]
 


Nous pouvons désormais aller au delà du résultat négatif de Poincaré et montrer que la non-intégrabilité ouvre, comme les systèmes chaotiques, la voie à une formulation statistique des lois de la dynamique.

Page 47

J'ai toujours pensé que la science était un dialogue avec la nature. Comme dans tout dialogue véritable les réponses sont souvent être inattendues.

Pages 65.

Adolescent, j'étais fasciné par l'archéologie, la philosophie et la musique. [...] Les sujets qui intéressaient avait toujours été ceux où le temps jouait un rôle essentiel, que ce soit l'émergence des civilisations, les problèmes éthiques associés à la liberté humaine où l'organisation temporelle des sons en musique. Mais la menace de la guerre pesait et il semblait plus raisonnable que je me dirige vers une carrière dans les sciences "dures". C'est ainsi que j'entamai des études de Physique et de Chimie à l'Université libre de Bruxelles.
Après tant d'années je ne peux pas me souvenir précisément de mes réactions, mais il me semble que j'ai ressorti étonnement et frustration. En physique, le temps était considéré comme un simple paramètre géométrique. Plus de cent ans avant Einstein et Minkowski, en 1796 déjà, Lagrange avait baptisé la dynamique "une géométrie à 4 dimensions". Einstein affirmait que le temps associé à l'irréversibilité était une illusion. Étant donné mes premiers intérêts, c'était une conclusion qu'il m'était impossible d'accepter, mais même aujourd'hui la tradition d'un temps spatialisé reste toujours vivante.

Page 66

Je ne suis certainement pas le premier à avoir senti que cette spatialisation du temps était incompatible tant avec l'univers évolutif que nous observons qu'avec notre expérience humaine. Ce fut d'ailleurs le point de départ du philosophe Henri Bergson, pour qui "le temps est invention où il n'est rien du tout". J'ai déjà cité l'article "le possible et le réel", une oeuvre assez tardive puisque l'article fut écrit en 1930  à l'occasion de son prix Nobel Bergson y parle du temps comme "jaillissement effectif de nouveauté imprévisible" dont témoigne notre expérience de la liberté humaine mais aussi de l'indétermination des choses. En conséquence, le possible est plus riche que le réel. L'univers autour de nous doit être compris à partir du possible , non à partir d'un quelconque état initial dont il pourrait, de quelque manière, être déduit.

Page 67.

Remarque : et même probablement, comme somme, comme intégrale des possibles


Comme l'a écrit le grand physicien A.S. Eddington: "dans toute tentative pour construire un pont entre les domaines d'expériences qui appartiennent aux dimensions spirituelles et aux dimensions physiques, le temps occupant la position cruciale".

Page 68  

Il me semblait que nier toute pertinence de la physique en ce qui concerne le temps était payer un prix trop élevé . Après tout, la science était un exemple unique de dialogue fructueux entre l'homme et la nature. N'était-ce pas parce que la science classique s'est cantonnée à l'étude de problèmes simples qu'elle a pu réduire le temps à un paramètre géométrique ? [...] Le temps ne serait-il pas une propriété émergente? Mais il faut alors découvrir ses racines. Jamais la flèche du temps n'émergera d'un monde régi par des lois temporelles symétriques. J'ai acquis la conviction que irréversibilité macroscopique était l'expression d'un caractère aléatoire niveau microscopique. J'étais encore très loin des contributions résumées au chapitre précédent, où l'instabilité impose une reformulation des lois fondamentales classiques et quantiques, même au niveau microscopique.

Page 69

Pour la grande majorité des scientifiques, la thermodynamique devrait se limiter de manière stricte à l'équilibre. Pour eux, l'irréversibilité associée à un temps unidirectionnel était une hérésie. Lewis alla jusqu'à écrire : "nous allons voir que presque partout le physicien a purifié sa science de l'usage d'un temps unidirectionnel ... Étranger à idéal de la physique."

Page 70

Après mon exposé, le plus grand expert en la matière fit le commentaire suivant : "je suis étonné que ce jeune homme soit tellement intéressé par la physique de non équilibre. Les processus irréversibles sont transitoires. Pourquoi alors ne pas attendre et étudier l'équilibre comme tout le monde ?"
J'ai été tellement étonné que je n'ai pas eu la présence d'esprit de lui répondre : "Mais nous aussi nous sommes des êtres transitoires. N'est il pas naturel de s'intéresser à notre condition humaine commune ?".
J'ai ressenti toute ma visite l'hostilité que suscite chez les physiciens le temps unidirectionnel. [...]
Partout autour de nous nous voyons l'émergence de structures, témoignage de la créativité de la nature pour utiliser le terme de Whitehead. J'étais persuadé que, d'une manière ou d'une autre, cette créativité était liée aux processus irréversibles.

Page 71

Contrairement aux systèmes soit à l'équilibre soit proches de l'équilibre, les systèmes loin de l'équilibre ne conduisent plus à un extremum d'une fonction telles que l'énergie libre où la production d'entropie. En conséquence, il n'est plus certain que les fluctuations soient amorties. Il est seulement possible de formuler les conditions suffisantes de stabilité que nous avons baptisé "critère général d'évolution". Ce critère met en jeu le mécanisme des processus irréversibles dont le système est le siège. Alors que à l'équilibre et près de l'équilibre, les lois de la nature sont universelles, loin de l'équilibre elles deviennent spécifiques, elles dépendent du type de processus irréversibles. Cette observation est conforme à la variété des comportements de la matière que nous observons autour de nous. Loin de l'équilibre, la matière acquiert de nouvelles propriétés où les fluctuations, les instabilités jouent un rôle essentiel : la matière devient active.

Page 74 - 75

La thermodynamique permet de formuler les conditions nécessaires à l'apparition de structures dissipatives en Chimie. Elles sont de deux types:
Les structures dissipatives se produisant dans des conditions éloignées de l'équilibre, il y a toujours une distance critique en deçà de laquelle la branche thermodynamique est stable.
Les structures dissipatives impliquent l'existence d'étapes catalytiques. Cela signifie qu'il existe dans la chaîne des réactions chimiques une étape dans laquelle un produit intermédiaire Y est obtenu à partir d'un produit intermédiaire X alors que dans une autre étape X est produit et à partir de Y.
Ces conditions, remarquons-le, sont satisfaites par tous les organismes vivants. Les enzymes, qui sont codées dans le matériel génétique, assurent une richesse et une multiplicité de réactions catalytiques sans équivalent dans le monde inorganique. Et sans elles, le matériel génétique resterait
lettre morte.

Page 77

La réaction de Belousov-Zhabotinski contitue un exemple spectaculaire d'oscillations chimiques qui se produisent en phase liquide loin de l'équilibre. Je ne décrirai pas ici cette réaction. Je veux seulement évoquer notre émerveillement lorsque nous vîmes cette solution réactive devenir bleue, puis rouge, puis bleue à nouveau... Aujourd'hui, bien d'autres récations oscillantes sont connues, mais la réaction de Belousov-Zhabotinski garde une importance historique. Elle a été la preuve que la matière loin de l'équilibre acquiert bel et bien de nouvelles propriétés. Des milliards de molécules évoluent ensemble et cette cohérence se manifeste par le changement de couleur de la solution. Cela signifie que des corrélations à longue portée apparaissent dans des conditions de non équilibre, des corrélations qui existent pas à l'équilibre. Sur un mode métaphorique, on peut dire qu'à l'équilibre la matière est aveugle, alors que loin de l'équilibre elle commence à voir. Et cette nouvelle propriété, cette sensibilité de la matière à elle-même et à son environnement, est liée à la dissipation associée aux processus irréversibles.

Pages 77-78

L'homogénéité du temps (comme dans les oscillations chimiques), ou de l'espace (comme dans les structures de Türing), ou encore de l'espace et du temps simultanément (comme dans les ondes chimiques) est brisée. De même, les structures dissipatives se différencient intrinsèquement de leur environnement.

Page 81

A propos des structures dissipatives, nous pouvons parler d'"auto organisation". Même si nous connaissons l'état initial du système, les processus donc il est le siège et les conditions aux limites, nous ne pouvons pas prévoir lequel des régimes d'activité ce système va choisir. Les bifurcations ne peuvent elles nous aider à comprendre l'innovation et la diversification dans d'autres domaines que la physique ou la chimie?

Page 81

L'activité humaine, créative et innovante, n'est pas étrangère à la nature. On peut la considérer comme une amplification et une intensification de traits déjà présents dans le monde physique, et que la découverte des processus loin de l'équilibre nous a appris à déchiffrer.

Page 82


Rapport aux communautés européennes.
 
Dans un rapport récent aux Communautés européennes, C.K. Biebracher, G
Nicolis et P. Schuster ont écrit:
"Le maintien de l'organisation dans la nature n'est pas - et ne peut pas être - réalisé par une gestion centralisée, l'ordre ne peut être maintenu que par une auto-organisation. Les systèmes auto-organisateurs permettent l'adaptation aux circonstances environnementales ; par exemple, ils réagissent à des modifications de l'environnement grâce à une réponse thermodynamique qui les rend extraordinairement flexibles et robustes par rapport aux perturbations externes. Nous voulons souligner que la supériorité des systèmes auto-organisateurs par rapport à la technologie humaine habituelle qui évite soigneusement la complexité et gère de manière centralisée la grande majorité des processus techniques. Par exemple, en chimie synthétique les différentes étapes réactionnelles sont soigneusement séparées les unes des autres, et les contributions liées à la diffusion des réactifs sont évitées par brassage. Une technologie entièrement nouvelle devra être développée pour exploiter le grand potentiel d'idées et de règles des systèmes auto-organisateurs en matière de processus technologiques. La supériorité des systèmes auto-organisateurs est illustrée par les systèmes biologiques où des produits complexes sont formés avec une précision, une efficacité, une vitesse sans égale".
La Fin des Certitudes Pages  82 & 83


C.K. Biebracher, G Nicolis et P. Schuster , Self Organisation in the Physico-Chemical and Life sciences, Report EUR 16546, European Commission 1995.

La nature nous présente en effet l'image de la création, de l'imprévisible nouveauté. Notre univers a suivi un chemin de bifurcations successives : il aurait pu en suivre d'autres. Peut-être pouvons-nous en dire autant pour la vie de chacun d'entre nous.

Page 83

L'existence d'une flèche du temps n'est pas une question de convenance. C'est un fait imposé par l'observation.

Page 86

L'application de Bernouilli introduit dès le départ une direction privilégiée du temps. Si nous prenons l'application inverse, nous obtenons un point attracteur unique, vers lequel convergent toutes les trajectoires quelle que soit la condition initiale. Voici la symétrie du temps est déjà brisée au niveau de l'équation du mouvement. La notion trajectoire n'est un mode de représentation adéquat que si la trajectoire reste à peu près la même lorsque nous modifions légèrement les conditions initiales. Les questions que nous formulons en physique doivent recevoir une réponse robuste, qui résiste à l'à peu près. La description en termes de trajectoires n'a pas ce caractère robuste. C'est la signification de la sensibilité aux conditions initiales.
Au contraire, la description statistique ne présente pas cette difficulté. C'est donc à ce niveau statistique que nous devons formuler les lois du chaos et c'est également à ce niveau que l'opérateur de Perron-Frobenius admet de nouvelles solutions.

Page 105

Les systèmes non intégrables de Poincaré seront ici d'une importance considérable. Dans ce cas, la rupture entre la description individuelle (trajectoire ou fonction d'onde) et la description statistique sera encore plus spectaculaire. Avait comme nous le verrons, pour de tels systèmes, le démon de Laplace reste impuissant, quelle que soit sa connaissance, finie ou même infinie,. Le futur n'est plus donné. Il devient, comme l'avait prédit le poète Paul Valéry, "une construction".

Page 124

La non-intégrabilité est due aux résonnances. Or, les résonnances expriment des conditions qui doivent être satisfaites par les fréquences: elles ne sont pas des événements locaux qui se produisent à un instant donné. Elles introduisent donc un élément étranger à la notion de trajectoire, qui correspond à une description locale d'espace temps.

Page 127

La physique de l'équilibre nous a donc inspiré une fausse image de la matière. Nous retrouvons maintenant la signification dynamique de ce que nous avions constaté au niveau phénomène logique : la matière à l'équilibre est aveugle et, dans les situations de non équilibre, elle commence à voir.

Page 149

C'est parce que, selon les termes d'Heisenberg, nous sommes à la fois "acteurs" et "spectateurs" que nous pouvons apprendre quelque chose de la nature. Cette communication, cependant, exige un temps commun. C'est ce temps commun qu'introduit notre approche tant en mécanique quantique que classique.
[...)
La direction du temps est commune à l'appareil de mesure et à l'observateur. Il n'est plus nécessaire d'introduire une référence spécifique à la mesure dans l'interprétation du formalisme.
[...]
Dans notre approche, l'observateur et ses mesures ne jouent plus un rôle actif dans l'évolution des systèmes quantiques, en tous cas, pas plus qu'en mécanique classique. Dans les deux cas nous transformons en action l'information que nous recevons du monde environnant. Mais ce rôle, s'il est important à l'échelle humaine, n'a rien à voir avec celui de démiurge que la théorie quantique traditionnelle assignait à l'homme, considéré comme responsable de l'actualisation des potentialités de la nature. En ce sens, notre approche restaure le sens commun. Elle élimine les traits anthropocentriques implicites dans la formulation traditionnelle de la théorie quantique.

Page 175

La science est un dialogue avec la nature. Mais comment un tel dialogue est-il possible ? Un monde symétrique par rapport au temps serait un monde inconnaissable. Toute prise de mesure, préalable à la création de connaissance, présuppose la possibilité d'être affectés par le monde, que ce soit nous qui soyons affectés ou nos instruments. Mais la connaissance ne présuppose pas seulement un lien entre celui qui connait et ce qui est connu, elle exige que ce lien crée une différence entre passé et futur. La réalité du devenir est la condition sine qua non à notre dialogue avec la nature.

Page 177

Comprendre la nature a été l'un des grands projets de la pensée occidentale. Il ne doit pas être identifié avec celui de contrôler la nature. Aveugle serait le maître qui croirait comprendre ses esclaves sous prétexte que ceux-ci obéissent à ses ordres. Bien sûr, lorsque nous nous adressons à la nature, nous savons qu'il ne s'agit pas de la comprendre à la manière dont nous comprenons un animal ou un homme. Mais là aussi la conviction de Nabokov s'applique : "ce qui peut être contrôlé n'est jamais tout à fait réel, ce qui est réel ne peut jamais être rigoureusement contrôlé."

Pages  177 & 178

Le déterminisme a des racines anciennes dans la pensée humaine, et il a été associé aussi bien à la sagesse, à la sérénité qu'au doute et au désespoir. La négation du temps, l'accès à une vision qui échapperait à la douleur du changement, est un enseignement mystique. Mais la réversibilité du changement n'avait, elle, été pensée par personne: "Aucune spéculation, aucun savoir n'a jamais affirmé l'équivalence entre ce qui se fait et ce qui se défait, entre une plante qui pousse, fleurit et meurt, et une plante qui ressuscite, rajeunit et retourne vers sa graine primitive, entre un homme qui mûrit et apprend, et un homme qui devient progressivement enfant, puis embryon, puis cellule."

Page 178

A quelque niveau que ce soit, la physique et les autres sciences confirment notre expérience de la réalité : nous vivons dans un univers en évolution.
[...] La dernière forteresse qui résistait à cette affirmation vient de céder. Nous sommes maintenant en mesure de déchirer le message de l'évolution tel qu'il prend racine dans les lois fondamentales de la physique. Nous sommes désormais en mesure de déchiffrer sa signification en termes d'instabilité associée au chaos déterministe et à la non-intégrabilité. Le résultat de notre recherche est en effet l'identification de systèmes qui imposent une rupture de l'équivalence entre la description individuelle (trajectoires, fonctions d'onde) et la description statistique d'ensembles. Et c'est au niveau statistique que l'instabilité peut être incorporée dans les lois fondamentales. Les lois de la nature acquièrent alors une signification nouvelle : elle ne traitent plus de certitudes mais de possibilités. Elles affirment le devenir et non plus seulement l'être. Elles décrivent un monde de mouvements irréguliers, chaotiques, un monde plus proche de celui qu'imaginaient les atomiques anciens que des orbites newtoniennes.

Page 179